Top Mining Articles

ThermoFisher has published an article listing the 10 most read articles on their blog last year.  Interesting read!

Each week we will be publishing one of the top ten in full so make sure you come back next week!

_____________________________

Link to the original article – https://www.thermofisher.com/blog/mining/top-10-mining-articles-this-year/

ThermoFisher Scientific

Top 10 Mining Articles This Year
By Marlene Gasdia-Cochrane, Editor
12.29.2020

“Here are the ten most read articles on this mining blog during the past year. Over a quarter of a million people viewed our mining blog this year. Surprisingly, the most read article, with over 47,000 views is a cement-related story. Take a look below and read the ones you missed. Some of them are a bit dated, but are still useful and tens of thousands found them still of great interest.

1. The Cement Manufacturing Process

Cement manufacturing is a complex process that begins with mining and then grinding raw materials that include limestone and clay, to a fine powder, called raw meal, which is then heated to a sintering temperature as high as 1450 °C in a cement kiln. In this process, the chemical bonds of the raw materials are broken down and then they are recombined into new compounds. The result is called clinker, which are rounded nodules between 1mm and 25mm across. The clinker is ground to a fine powder in a cement mill and mixed with gypsum to create cement. The powdered cement is then mixed with water and aggregates to form concrete that is used in construction. Learn about the various laboratory and online systems that can be employed to ensure process control and a quality product.

2. Pyrite: The Real Story Behind “Fool’s Gold”

Pyrite is called “Fool’s Gold” because it resembles gold to the untrained eye. While pyrite has a brass-yellow color and metallic luster similar to gold, pyrite is brittle and will break rather than bend as gold does. Gold leaves a yellow streak, while pyrite’s streak is brownish black. Learn about other reasons this Sulfide mineral is often mistaken for gold, and how XRF analyzers can help identify the real thing.

3. New to the Mining Industry? Make Sure You Know the Most Common Types of Mining Equipment

The most common types of mining equipment vary depending whether the work is being carried out above or below ground or mining for gold, metals, coal or crude oil. From drilling machines to excavators, crushing and grinding equipment – the mining industry comes complete with all the right tools. New to the job and want to find out what it all means? Here’s a few of the industry’s most common types of equipment and why they’re important for the job.

4. Where Will All the Lithium Needed for Electric Cars Be Mined?

There’s a growing demand for lithium-ion (Li-ion) batteries to supply the electric car market. But lithium is a poorly concentrated mineral, so traditional hard-rock mining of lithium-bearing pegmatite and spodumene is a costly and time-intensive endeavor. The easiest and least expensive method of obtaining lithium is by the evaporation of highly concentrated lithium brine. Learn where it’s being found and mined.

5. Where Did Those Gemstones Come From?

Mining for precious colored gemstones is rigorous and time-consuming because the deposits are few and when found, tend to be characterized by small quantities of gems scattered throughout a large amount of rock. Modern mining techniques are of little value in these circumstances, and the deposits are often too small to be profitable for major mine outfits, who leave them to small, independent miners who rely on the same manual techniques they have been using for decades. Nevertheless, in recent years, several major mining companies have entered the gemstone market with new strategies for employing modern mining practice.

6. What Is Ambient Air?

Air quality is an important issue, especially in highly regulated industries such as coal mining, cement processing, and coal‐ and oil‐fired power generation. Rules such the Mercury and Air Toxics Standards (MATS) and the Maximum Achievable Control Technology (MACT) Standards are designed to protect the public and keep ambient air pollution-free. Ozone is another pollutant of ambient air that has been linked to global warming and health risks for children. The 2015 National Ambient Air Quality Standards (NAAQS) for Ozone addresses primary and secondary ozone standard levels.

7. What You Need to Know About Mining Philippines

Mining Philippines, an international conference and exhibition organized by the Philippines Chamber of Mines, showcased the latest products that are advancing the interest of mining, quarrying and mineral processing. According to the show website, attendees learned about the latest technology that can help in “efficient exploration, development and utilization of minerals in consonance with sound economic, environmental and social policies etc. in the Minerals, Metals & Ores industry.

8. Mining and the Environment: What Happens When A Mine Closes?

Mining operations, however expansive and complex, are temporary. Eventually, once the most accessible and valuable materials have been extracted, the mine is closed, and the site must be restored back to its original state. This includes covering up mine entrances, replanting grass and trees, and testing surrounding water, soil, and air for contaminants.

9. Ubiquitous Industrial Minerals: Nature’s Most Popular Raw Materials

Industrial minerals are generally defined as minerals that are not sources of metals, fuel, or gemstones. The most widely-used industrial minerals include limestone, clays, sand, gravel, diatomite, kaolin, bentonite, silica, barite, gypsum, potash, pumice, and talc. Some of the industrial minerals commonly used in construction, such as crushed stone, sand, gravel, and cement, are called aggregates. Industrial minerals are extremely versatile; most have at least two, sometimes many more, applications and span multiple markets.

10. Potash: A Look at the World’s Most Popular Fertilizer

Today, potash comes from either underground or solution mining. Underground potash deposits come from evaporated sea beds. Boring machines dig out the ore, which is transported to the surface to the processing mill, where the raw ore is crushed and refined to extract the potassium salts. When deposits are located very deep in the earth, solution mining is used as an alternative to traditional underground mining. Solution mining employs the use of water or brine to dissolve water soluble minerals such as potash, magnesium or other salts. Wells are drilled down to the salt deposits, and the solvent is injected into the ore body to dissolve it. The solution is then pumped to surface and the minerals are recovered through recrystallization.”

________________________________________________

Top Mining Articles

Dust Monitoring Equipment – providing equipment, services and training in dust fallout management to the mining industry.

Comments are closed.