Tag Archives: dust particles

Mysterious giant dust particles

Mysterious giant dust particles found at gravity-defying distances
by University of Reading

Read the full article at Phys.org – https://phys.org/news/2018-12-mysterious-giant-particles-gravity-defying-distances.html

“An unknown influence is allowing giant dust particles to spread around the world and could be contributing to global warming, scientists have found.

Large dust particles from the Sahara Desert have been found up to 3500 km away in the Caribbean. These were nearly 50 times bigger than scientists thought was possible to be transported such a distance via global winds.

Dust affects the delicate balance between incoming sunlight and heat emitted from Earth, tropical cyclone development and the formation of clouds. The scientists say the large particles’ role in the atmosphere, with their unexpected long-range effects, should be included in climate models in future.

Professor Giles Harrison, Professor of Atmospheric Physics at the University of Reading, and a co-author of the study, said: “These dust particles are whipped up from the Sahara Desert and carried between continents, and most people know them best when they end up settling on our cars or cause the kind of eerie orange skies we saw a year ago.

“However, existing ideas do not allow for such massive particles travelling in the atmosphere for such vast distances, suggesting that there is some as-yet-unknown atmospheric process or combination of processes keeping them airborne. Charging of the particles and associated electric forces is one avenue being explored.

“This evidence of dust and ash being carried so far is significant because these particles influence radiation transfer around the Earth and carbon cycles in the oceans.”

Role of large dust particles ‘underestimated’

The research, led by the Royal Netherlands Institute for Sea Research (NIOZ), is published today in Science Advances.

Winds carry dust particles from the Sahara west over the Atlantic Ocean. The researchers collected desert dust in floating buoys and underwater sediment traps in five locations in the Atlantic Ocean between 2013 and 2016.

It was previously thought the size of the particles in this cloud ranged from 0.01-0.02mm in diameter, but scientists found particles measuring 0.45mm in samples in the Caribbean.

The scientists argue this means the role of large dust particles, especially quartz, in both cloud formation and the carbon cycle in the oceans has been underestimated. The role of the particles is largely neglected in computer models used to explain and predict climate change because they have not been thought to persist in the atmosphere.

The research also suggests the amount of dust removed from the atmosphere by rain, rather than gravity, is greater than previously assumed. ”

_____________________________________

Dust Monitoring Equipment – providing equipment, services and training in dust fallout management to the mining industry.

DustWatch – Fallout Dust Monitoring Equipment. Dust Monitoring Equipment – Supply and Services of Dust Monitoring Equipment. Dust Buckets. Dust monitoring training courses. Dust Watch.

Researchers study particulate matter in air samples

Have a look at these two articles on particulate matter in air samples.

Follow the links to the original articles.

Particulate Matter

Researchers study particulate matter in air samples
July 3, 2018 by Andrea Six, Swiss Federal Laboratories for Materials Science and Technology
Phys.org

“Current legal limits for fine dust in the air are based on the mass and size of the particles. For health effects, however, not only the amount of dust is decisive, but also its chemical composition. Empa researchers have now compared the noxious potential of particulate matter in Switzerland and in China.

Anyone who is suddenly shaken by an uncontrollable cough attack on a cloudy day may suffer from the consequences of high fine dust load in the air. Breathing problems, cardiovascular disease and even lung cancer can be caused by these tiny particles. They include soot, metals and engineered nanoparticles. In order to control air quality more widely, a stricter Ordinance on Air Pollution Control has come into effect in Switzerland on 1 June 2018. Since then, PM2.5 has been created as the second standard for even finer suspended solids in addition to PM10. However, both values are only based on the amount of particles smaller than certain size limits – i.e. 10 or 2.5 micrometers in diameter. Empa researchers have now shown in a study that the amount of fine dust alone does not necessarily indicate the noxious potential of the polluted air.

How dangerous is particulate matter? An analysis

Jing Wang and his team from Empa’s Advanced Analytical Technologies lab examined air samples from Switzerland and China. As expected, the air quality of the metropolitan Beijing region performed worse than the samples from Switzerland. With their detailed analyses, however, the researchers also revealed that the composition of fine dust differs. “If we look at the so-called oxidative potential of particulate matter, for example, the effect of some Swiss samples with comparable particle quantities was more severe and therefore more momentous than in China,” says Wang.

The oxidative potential is a measure of the damaging effect of fine dust, as aggressive substances trigger oxidative stress and reactions of the body’s immune system. Oxidative stress can be caused by metals such as cadmium and arsenic or soot particles. In China, large quantities of ultrafine arsenic particles indicated an increased health risk. Samples from the Zurich suburb of Dübendorf, on the other hand, contained significantly more iron particles in the 10 micrometer range. “The iron particles originate from the abrasion of the nearby railway line,” says the researcher. Together with copper and manganese, the iron dust in the Dübendorf air contributed to the oxidative potential of the air samples.

Another Swiss value attracted the attention of the Empa researchers: The air sample from a Swiss farm fared worse than that from a busy road in the middle of Beijing, at least as far as the contamination with certain bacterial products was concerned. It is known that such endotoxins are abundant in the air in the surroundings of cows and Co. And especially for people with a weakened immune system, particles contaminated with bacterial endotoxins can pose a serious health risk.

“The effects of fine particles on air quality and health cannot be assessed solely on the basis of their amount,” says Wang. “But if the composition of particulate matter is known, a regionally adapted health protection can be implemented.” Otherwise one runs the risk of underestimating the regional air pollution or of taking measures that don’t reduce the health risk. Jing Wang and his team are now working on developing standards for more precise analyses of particulate matter. The aim should be to identify dangerous components more easily and to prevent health risks with optimized strategies.”

_______________________________________________

Particulate Matter (PM) Pollution

EPA

What is PM, and how does it get into the air?

“PM stands for particulate matter (also called particle pollution): the term for a mixture of solid particles and liquid droplets found in the air. Some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be seen with the naked eye. Others are so small they can only be detected using an electron microscope.

Particle pollution includes:

PM10 : inhalable particles, with diameters that are generally 10 micrometers and smaller; and
PM2.5 : fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller.
How small is 2.5 micrometers? Think about a single hair from your head. The average human hair is about 70 micrometers in diameter – making it 30 times larger than the largest fine particle.
Sources of PM
These particles come in many sizes and shapes and can be made up of hundreds of different chemicals.

Some are emitted directly from a source, such as construction sites, unpaved roads, fields, smokestacks or fires.

Most particles form in the atmosphere as a result of complex reactions of chemicals such as sulfur dioxide and nitrogen oxides, which are pollutants emitted from power plants, industries and automobiles.

What are the Harmful Effects of PM?
Particulate matter contains microscopic solids or liquid droplets that are so small that they can be inhaled and cause serious health problems. Particles less than 10 micrometers in diameter pose the greatest problems, because they can get deep into your lungs, and some may even get into your bloodstream.

Fine particles (PM2.5) are the main cause of reduced visibility (haze) in parts of the United States, including many of our treasured national parks and wilderness areas.”

___________________________

Dust Monitoring Equipment – providing equipment, services and training in dust fallout management to the mining industry.