Lets learn a little about potash.


Source – https://www.thermofisher.com/blog/mining/potash-a-look-at-the-worlds-most-popular-fertilizer/?icid=CAD_blog_mining_2020Dec

Potash: A Look at the World’s Most Popular Fertilizer
By Ali Somarin

“Potash, pronounced pot-ash, is the term commonly used to describe potassium-containing salts used as fertilizer. Most potash is derived from potassium chloride (KCl), which is also known as Muriate of Potash (MOP). As a source of soluble potassium, potash is vital to the agricultural industry as a primary plant nutrient. Potash increases water retention in plants, improves crop yields, and influences the taste, texture, and nutritional value of many plants.

Potash was originally made by leaching tree ashes in metal pots. The process left a white residue on the pot, called “pot ash.”


MOP is the most common potash, representing approximately 95% of agricultural potash worldwide, but there are several other forms. The second major form of potash is potassium sulphate or Sulphate of Potash (SOP). What’s the difference? MOP is about half potassium, half chloride, which makes it useful in applications where soil chloride content is low. It is used on carbohydrate crops including wheat, oats, and barley. Also, it’s cost-effective compared to other potassium compounds.

Unlike MOP, which is mined, most SOP is produced chemically. SOP doesn’t contain any chloride, which can be an advantage in situations where soil chloride content is high, for example, in very dry environments. SOP is considered a specialty fertilizer for crops such as fruits, vegetables, potatoes, tobacco, and tree nuts and though it represents a smaller market than MOP, it is priced at a premium.

Where does potash come from?

Most of the world’s potash comes from Canada, with the largest deposits located in Saskatchewan and New Brunswick. Russia and Belarus rank as the second and third highest potash producers. In the United States, 85% of potash is imported from Canada, with the remaining produced in Michigan, New Mexico, and Utah. According to the U.S. Geological Survey, the 2013 production value of marketable potash, f.o.b. mine, was about $649 million. The fertilizer industry used about 85% of U.S. potash sales, and the chemical industry used the remainder. More than 60% of the potash produced was MOP.

Potash mining

Today, potash comes from either underground or solution mining. Underground potash deposits come from evaporated sea beds. Boring machines dig out the ore, which is transported to the surface to the processing mill, where the raw ore is crushed and refined to extract the potassium salts. When deposits are located very deep in the earth, solution mining is used as an alternative to traditional underground mining. Solution mining employs the use of water or brine to dissolve water soluble minerals such as potash, magnesium or other salts. Wells are drilled down to the salt deposits, and the solvent is injected into the ore body to dissolve it. The solution is then pumped to surface and the minerals are recovered through recrystallization.

What both mining techniques have in common is that companies employing either one need to improve operational efficiency and quality control, increase productivity, manage data, and monitor their operations for compliance with product and environmental safety standards. Laboratory information management systems (LIMS) are the ideal solution to accomplish these goals. Other solutions that improve mine operational efficiency include portable x-ray fluorescence (XRF) analyzers, bulk weighing and monitoring products and mineral analyzers and sampling systems.”



Source https://feeco.com/7-granulated-potash/

By Chris Kozicki

“Potash is the general name given to various inorganic compounds that contain potassium in a water-soluble form. A number of common potassium compounds exist, including potassium carbonate and potassium chloride. Before the industrial era, potash was obtained by leaching wood ashes in a pot (hence the name ‘pot-ash’). This product was used to manufacture soap, glass, and even gunpowder.

Today, deposits of potassium-bearing minerals are mined and processed to compound potash into a more usable, granular form. Astonishingly, the amount of potash produced worldwide each year exceeds 30 million tonnes. While most potash is used in various types of fertilizers, there are many other non-agricultural purposes for this element. Modern processing, such as potash compaction, produces a readily available form of potassium, leaving granular potash open to a myriad of uses.

Common Source Materials: Potassium Carbonate, Potassium Chloride, Potassium Sulfate…
Plants require three primary nutrients: nitrogen, phosphorous, and potassium. Potash contains soluble potassium, making it an excellent addition to agricultural fertilizer. It ensures proper maturation in a plant by improving overall health, root strength, disease resistance, and yield rates. In addition, potash creates a better final product, improving the color, texture, and taste of food.

While some potassium is returned to farmlands through recycled manures and crop residues, most of this key element must be replaced. There is no commercially viable alternative that contributes as much potassium to soil as potash, making this element invaluable to crops. For this reason, the most prevalent use of potash is in the agriculture industry. Without fertilizers assisting crop yields, scientists estimate that 33% of the world would experience severe food shortages. The replenishment of potassium to the soil is vital to supporting sustainable food sourcing. Potash compaction granules blend easily into fertilizers, delivering potassium where it is needed most.

Common Source Materials: Potassium Carbonate
Another agricultural use for potash (potassium carbonate) is animal feed. Potash is added as a supplement to boost the amount of nutrients in the feed, which in turn promotes healthy growth in animals. As an added benefit, it is also known to increase milk production.

Common Source Materials: Potassium Carbonate
The food industry utilizes potash (potassium carbonate) as a general-purpose additive. In most instances, it is added as a source of food seasoning. Potash is also used in brewing beer. Historical Use: Potash was once used in German baked goods. It has properties similar to baking soda, and was used to enhance recipes such as gingerbread or lebkuchen.

Common Source Materials: Potassium Hydroxide
Caustic potash (potassium hydroxide) is a precursor to many ‘potassium soaps,’ which are softer and less common than sodium hydroxide-derived soaps. Potassium soaps have greater solubility, requiring less water to liquefy versus sodium soaps. Caustic potash is also used to manufacture detergents and dyes.

Common Source Materials: Potassium Chloride
Potash (potassium chloride) is used as an environmentally friendly method of treating hard water. It regenerates the ion exchange resins more efficiently than sodium chloride, reducing the total amount of discharged chlorides in sewage or septic systems.

Common Source Materials: Potassium Chloride
Potash (potassium chloride) is a major ingredient in deicer products that clear snow and ice from surfaces such as roads and building entrances. While other chemicals are available for this same purpose, potassium chloride holds an advantage by offering a fertilizing value for grass and other vegetation near treated surfaces.

Common Source Materials: Potassium Carbonate
Glass manufactures use granular potash (potassium carbonate) as a flux, lowering the temperature at which a mixture melts. Because potash confers excellent clarity to glass, it is commonly used in eyeglasses, glassware, televisions, and computer monitors.

In addition to the uses described above, potash also lends itself well to a variety of other applications, including aluminum recycling, explosives (in products such as fireworks and matches), and pharmaceuticals. As an essential nutrient available in a variety of compounds and flexible in application, the benefits that potash offers the modern world are nearly endless.

FEECO has been working with the various forms of potash for over 60 years, providing agglomeration and material handling solutions for potash processing facilities around the world. Additionally, the FEECO lab can test feasibility of potash granulation and agglomeration with various binders, equipment, and process variations. Contact us today for more information on granular potash!”


Dust Monitoring Equipment – providing equipment, services and training in dust fallout management to the mining industry.

Comments are closed.